
Drag Your Applications into
the 21st Century with Drag-

and-Drop

Tamar E. Granor
Tomorrow's Solutions, LLC

Voice: 215-635-1958
Website: www.tomorrowssolutionsllc.com
Email: tamar@tomorrowssolutionsllc.com

Users today expect to be able to interact with applications by dragging and dropping. FoxPro
has offered drag-and-drop capability since VFP 3, but many developers have never worked
with it. In fact, VFP offers two separate approaches for drag-and-drop, a native capability and
OLE drag-and-drop, which allows you to interact with other applications and gives you
greater control over the process.

Drag Your Applications into the 21st Century with Drag-and-Drop

Copyright 2018, Tamar E. Granor Page 2 of 43

In this session, we'll look at both approaches and show both how easy simple drag-and-drop
is, and the complex things you can accomplish with it.

Introduction
Drag-and-drop has been part of user interfaces for decades. Visual FoxPro 3 introduced the
ability to provide drag-and-drop in VFP applications and VFP 5 added the ability to drag-
and-drop between VFP and other applications. Yet most VFP applications I’ve encountered
don’t offer drag-and-drop capabilities, even where they would make user’s lives easier.

That may be because getting drag-and-drop right can be a little tricky. There are two
different drag-and-drop systems built into VFP and each them offers multiple approaches.
But with a little effort up front, you can give users the ability to move things around both
within VFP applications and between VFP applications and other applications.

Why are there two?
Though FoxPro 2.0 and later included drag-and-drop in the IDE (interactive development
environment), the language didn’t have support for putting it into your applications. VFP 3,
however, included drag-and-drop functionality in the base classes for forms and all the
visible controls. For the first time, we could easily create forms that let users move controls
around.

However, in Windows (and on Macs), drag-and-drop operates between applications, not
just within individual applications. VFP 3 didn’t provide a way to do that, presumably
because it was a cross-platform product, with versions for Windows, Mac and Unix. (A DOS
version was originally announced, but never completed.)

With the commitment to Windows-only in VFP 5, there was no longer a need to ensure
drag-and-drop worked across platforms. So, in VFP 6, support was added for cross-
application drag-and-drop, known as OLE drag-and-drop, but support for native drag-and-
drop was retained as well for backward compatibility.

The names of all the properties, events and methods (PEMs) for native drag-and-drop
begin with “Drag.” The names of the PEMs for OLE drag-and-drop begin with “OLE” (except
for those belonging to the data object, explained later in this paper).

This paper covers both approaches, but for the most part, I recommend OLE drag-and-
drop. It’s more powerful and offers a finer-grained approach.

Basics
Whichever type of drag-and-drop you choose, two objects are involved at any time:

 the drag source, the control or application you’re dragging from;

 the drop target, the control or application onto which data may be dragged.

Drag Your Applications into the 21st Century with Drag-and-Drop

Copyright 2018, Tamar E. Granor Page 3 of 43

In OLE drag-and-drop, there’s a third object, called the data object, which is an OLE object
containing the data from the drag source in multiple formats.

The VFP base classes include PEMs for an object to serve as either a drag source or a drop
target. In fact, an object can be both.

Both versions support both manual and automatic dragging. That is, whether you’re using
native drag-and-drop or OLE drag-and-drop, you can set a control so that clicking on it and
starting to move begins a drag automatically, or you can require a method call from
MouseDown (or, for native drag-and-drop only, MouseMove) to start dragging. Note that at
any given time, a control can be a drag source with either native drag-and-drop or OLE
drag-and-drop, but not both.

With native drag-and-drop, there’s no property to indicate whether an object is a drop
target. You can use code to change the icon to the “no drop” icon when over a control onto
which the user shouldn’t drop. OLE drag-and-drop gives you more control here; a property
indicates whether an object allows drops.

Table 1 shows the PEMs involved in both native and OLE drag-and-drop. As the table
shows, OLE drag-and-drop provides a lot more control and, in fact, there are additional
methods that belong to the data object. The details of all these PEMs are discussed later in
this document.

Table 1. Controlling drag-and-drop involves a number of properties and methods.

Purpose Native OLE Comments
Control automatic drag DragMode OLEDragMode Property of drag source:

 0=manual
 1=automatic

Start manual drag Drag OLEDrag Method of drag source
Respond to start of drag OLEStartDrag Event of drag source
Respond to end of drag OLECompleteDrag Event of drag source
Control icon seen while dragging DragIcon OLEDragPicture Property of drag source
Show user result of possible drop OLEGiveFeedback Event of drag source
Control whether object is drop target OLEDropMode Property of drop target
Respond to drag over object DragOver OLEDragOver Event of drop target
Respond to drop onto object DragDrop OLEDragDrop Event of drop target
Indicate whether the drag source has
useful data

 OLEDropHasData Property of drop target

Indicate what types of drops are
accepted

 OLEDropEffects Property of drop target

Indicates whether text can be inserted in
the middle of existing text

 OLEDropTextInsertion Property of drop target:
 0=insert anywhere
 1=insert at beginning of
word.
Broken in VFP 7 and later;
has no effect.

Specify the actual data to be dropped OLESetData Event of drag source

Drag Your Applications into the 21st Century with Drag-and-Drop

Copyright 2018, Tamar E. Granor Page 4 of 43

Native Drag-and-drop
VFP’s native drag-and-drop lets you drag controls within VFP forms and from one VFP form
to another, but only within a single instance of VFP or a VFP executable. You can determine
how dragging starts, what shows when you’re dragging, what happens when you drag over
a control and what happens when you drop.

There are two ways to start a native drag. The first is to set a control’s DragMode property
to 1-Automatic. When you do that, as soon as you click the mouse down onto the control,
dragging begins. Dragging normally ends when you release the mouse button.

The second way to start a native drag is to call the Drag method of a control and pass 1 as a
parameter. The usual place to do that is in the MouseDown or MouseMove method of the
control. Since you don’t necessarily want to start dragging just because the user pushed the
button down and then moved a tiny bit, it’s common to put code in MouseDown to save the
mouse position when the mouse button was clicked and use code in MouseMove to check
whether you’ve moved far enough to trigger dragging, as in Listing 1. (This code is
included in the most of the drag-and-drop base classes in the session materials. The class
library is dragdropbase.vcx.)

Listing 1. Code like this in the MouseMove event lets you start dragging only if the user has moved the mouse
enough to warrant it.

LPARAMETERS nButton, nShift, nXCoord, nYCoord

IF m.nButton = 1
 IF ABS(m.nXCoord - This.nMouseX) + ABS(m.nYCoord - This.nMouseY) > 5
 This.Drag(1)
 ENDIF
ENDIF

Be aware that this approach doesn’t work well for all of the base classes. Specifically, those
that allow input by typing (textboxes, editboxes, spinners, and comboboxes with Style set
to 0-dropdown combo) are hard to drag when using this approach. You have to click over a
part of the control that can’t accept focus, such as a border or scroll bar to start dragging.

The DragIcon property lets you control what the user sees when dragging. Although the
name contains “icon,” the property accepts both cursor files (.CUR) and icon files (.ICO).
You can specify DragIcon at design-time or at run-time. One common use for this property
is to indicate that a particular object doesn’t accept drops from the dragged control by
setting the drag source’s DragIcon to the universal “No” sign (included with VFP as
HOME(4) + “Cursors\NoDrop01.CUR”) in the drop target’s DragOver method.

Two events control what happens when you’re dragging, DragOver and DragDrop. The
DragOver event of a drop target fires when you drag over it, while DragDrop fires when you
release the mouse button while over the object. Both have parameters to indicate the drag
source, as well as the mouse position.

Drag Your Applications into the 21st Century with Drag-and-Drop

Copyright 2018, Tamar E. Granor Page 5 of 43

DragOver has an additional parameter to indicate where the drag source is with respect to
the drop target’s space: entering (0), leaving (1), or still within (2). As described above, you
might use that to change the drag source’s DragIcon, using code like that in Listing 2. This
code also saves and restores the drag source’s original DragIcon, by creating a property of
the drag source if necessary.

Listing 2. Use code like this to indicate that an object doesn’t accept a drop.

LPARAMETERS oSource, nXCoord, nYCoord, nState

DO CASE
CASE m.nState = 0 && Entering, no drops here
 * Save prior icon
 IF PEMSTATUS(oSource, "cDragIcon", 5)
 oSource.cDragIcon = oSource.DragIcon
 ELSE
 oSource.AddProperty("cDragIcon", oSource.DragIcon)
 ENDIF

 oSource.DragIcon = HOME(4) + "Cursors\NoDrop01.CUR"

CASE m.nState = 1 && Leaving, so reset
 * There should always be something to reset it to, but jic
 IF PEMSTATUS(oSource, "cDragIcon", 5)
 oSource.DragIcon = oSource.cDragIcon
 ELSE
 oSource.ResetToDefault("DragIcon")
 ENDIF

OTHERWISE
 * Nothing to do
ENDCASE

The code can also interrogate the drag source, so that it behaves differently depending on
what object or what kind of object is being dragged. So, for example, in a two-column
mover (see “A two-column mover,” later in this document), each list could indicate that it
accepts drops only from the other list, by showing the no drop icon for any other drag
source.

Put code to take action on a drop in DragDrop. For example, you could change the text of a
label in its DragDrop event with code like Listing 3. As the example shows, here, too, you
can interrogate the DragSource to determine the action to take.

Listing 3. Use the DragDrop event to respond to drops.

LPARAMETERS oSource, nXCoord, nYCoord

IF PEMSTATUS(oSource, "Text", 5)
 This.Caption = oSource.Text
ENDIF

Drag Your Applications into the 21st Century with Drag-and-Drop

Copyright 2018, Tamar E. Granor Page 6 of 43

Figure 1 shows the form NativeSample2.SCX, included in the downloads for this session,
just before dropping the textbox labeled “Manual drag” on the container with the “Drop
here” label. Figure 2 shows the same form after the drop. The container has a second label,
whose Caption is initially blank (thus hiding the label); the container’s DragDrop has code
similar to that in Listing 3, but it sets the label’s Caption. (This form, like many in this
session, is designed to show all drag-and-drop events as they fire.)

Figure 1. With native drag-and-drop, by default, you see the outline of the control you’re dragging.

Drag Your Applications into the 21st Century with Drag-and-Drop

Copyright 2018, Tamar E. Granor Page 7 of 43

Figure 2. The code in the drop target’s DragDrop event determines what happens when you drop. Here, the
caption of a label inside the container changes.

That’s really it, for native drag-and-drop. With those PEMs, you can do quite a bit, but
you’re limited to working with VFP’s objects within VFP.

OLE drag-and-drop
OLE drag-and-drop offers a lot more possibilities, both within VFP and when coordinating
with other applications. You can drag and drop across applications and you have more
control over whichever of the drag source and the drop target are VFP objects.

As with native drag-and-drop, there are two ways to begin OLE dragging a VFP object. You
can set OLEDragMode to 1-Automatic. Again like native dragging, dragging begins with
pushing the mouse button down and ends when you release the mouse button. However,
unlike native drag-and-drop, if you start dragging in a textbox or editbox, nothing happens
unless some text is selected. If text is selected, the OLEDrag event fires and dragging begins.

However, there’s even less reason to set OLEDragMode to automatic than there is for
DragMode. That’s because the alternative is to call the OLEDrag method from MouseDown
to start dragging. OLEDrag accepts a single logical parameter that indicates whether
dragging should start immediately when the method is called or should wait for mouse

Drag Your Applications into the 21st Century with Drag-and-Drop

Copyright 2018, Tamar E. Granor Page 8 of 43

movement or some time to pass. In other words, it handles automatically what we had to
do with code in native drag-and-drop. As a result, it’s better to keep OLEDragMode set to 0-
Manual, and just put This.OLEDrag(.T.) in the MouseDown event of any control you want to
make draggable.

For the simplest cases, that may be all the code you need (except for setting up one or more
drop targets by setting their OLEDropMode property). If what you’re dragging is text (as
from a textbox or editbox) and the target accepts text, the act of dropping is sufficient. The
form OLESample1.SCX in the session materials demonstrates. Type something in either of
the textboxes, then highlight it and drag it to the smaller editbox. (Be aware that you if you
highlight with the mouse, you have to release the mouse button after highlighting and then
click it again to being dragging.) When you drop, the text moves from the textbox to the
editbox. Figure 3 shows the process just before dropping.

Figure 3. When you’re dragging and dropping text, you may need no code other than a little to start the drag
operation. Here, the highlighted text in the “Manual drag” textbox is dragged over the unlabeled editbox.

While the simplicity of dragging text with OLE drag-and-drop is great, what makes it worth
learning is everything else you can do. The PEMs involved let you decide what you’re
actually dragging, what actually gets dropped and how VFP forms and controls behave
along the way.

Drag Your Applications into the 21st Century with Drag-and-Drop

Copyright 2018, Tamar E. Granor Page 9 of 43

There’s really no good order in which to discuss how OLE drag-and-drop works. No matter
which PEMs you discuss first, you’ll need to refer to stuff that hasn’t been discussed yet.
Similarly, it’s hard to show examples until the whole thing has been discussed. That said,
several forms (in particular, OLESample1.SCX and OLESample2.SCX) in this session’s
downloads demonstrate the various PEMs, and you may want to look at them while reading
this description.

OLE drag-and-drop parameters

A number of OLE drag-and-drop methods receive one or both of a pair of parameters. Each
of them means the same thing wherever it’s used.

The oDataObject parameter is a COM object, described in the section “The Data Object,”
later in this document, that holds the data being dragged.

The nEffect parameter is an additive value that indicates what can, will or did happen in a
drop; the OLEDropEffects property uses the same set of additive values. The list of values is
shown in Table 2.

Table 2. The nEffect parameter and the OLEDropEffects property get their values by adding one or more of
these items together.

Value Meaning
0 No drop
1 Copy
2 Move
4 Link

Unlike the way most VFP methods work, some of the parameters passed to OLE drag-and-
drop methods are passed by reference, so changes within the method have an effect on the
operation. Among the things you can change this way are the effect of a drop and the icon
used for dragging.

Drag source PEMs

The drag source has one method, four events and a property to control its behavior. The
method, OLEDrag, lets you start dragging. The OLEDragPicture property and the
OLEGiveFeedback event together determine what the user sees as the object is dragged. In
OLE drag-and-drop, the image you see has two parts, one indicating the drag source and
one indicating what will happen if you drop on the current drop target. OLEDragPicture
determines the drag source part of the image. You can change this property while dragging,
but the actual icon displayed doesn’t change until the current drag ends. You can set the
result portion in the OLEGiveFeedback event. It receives the nEffect parameter so you can
tell how the current drop target would deal with a drop; use that information to change the
value of the eMouseCursor parameter. You’ll rarely need to use OLEGiveFeedback because
for the most part, the prospective drop targets provide the necessary feedback.

The OLEStartDrag event fires as dragging begins. To specify what the drop target can do
with the data being dragged, set the nEffect parameter in the method. In addition, as

Drag Your Applications into the 21st Century with Drag-and-Drop

Copyright 2018, Tamar E. Granor Page 10 of 43

described in the subsection, “The Data Object,” later in this section, you can put code in
OLEStartDrag to specify what data is being dragged.

The drag source’s OLESetData event gives you one last chance to change the data to be
dropped. It fires after the drop target’s OLEDragDrop method, but before the drag source’s
OLECompleteDrag. It receives two parameters: the data object and the requested format.
See the subsection, “The Data Object,” later in the section, for a discussion of how to modify
the contents of the data object.

The drag source’s OLECompleteDrag event is the last to fires in the whole sequence. It
receives the nEffect parameter to tell you what actually happened.

Drop target PEMS

The drop target has two events and three properties to control the operation. The
OLEDropMode property determines whether the object pays any attention to the drag at
all. If it’s set to 0, the object doesn’t respond to the drag and the “no drop” icon shows.
Setting OLEDropMode to 1 makes the object a drop target and allows its events to fire.
Setting OLEDropMode to 2 says that any drag or drop on this object should instead be
handled by the object’s container. See the section “Moving actual objects,” later in this
paper, for an example.

The OLEDropHasData property indicates whether the drop target can accept data from the
drag source. The default value of -1 lets the objects figure this out on their own, but you can
change the property to indicate that the drop target can’t accept data from this drag source
(0) or that it can (1). Most of the time, you can leave the default value, but when you want
to do something that’s not built in, this property is part of the solution.

The OLEDropEffects property lets the drop target decide how a drop will be handled. As
noted earlier, it’s additive, using the values shown in Table 2.

OLEDragOver and OLEDragDrop are the OLE drag-and-drop equivalents of the native
DragOver and DragDrop events. They fire when you drag over the drop target and when
you drop, respectively. They both receive a whole bunch of parameters, as shown in Listing
4. The lists are the same, except that OLEDragOver receives an addition parameter, nState,
that indicates whether the mouse is entering (0), leaving (1), or remaining within (2) the
object.

Listing 4. Both OLEDragOver and OLEDragDrop receive a whole bunch of parameters.

PROCEDURE oObject.OLEDragOver
LPARAMETERS oDataObject, nEffect, nButton, nShift, nXCoord, nYCoord, nState

PROCEDURE oObject.OLEDragDrop
LPARAMETERS oDataObject, nEffect, nButton, nShift, nXCoord, nYCoord

The oDataObject parameter is discussed in the next subsection, “The Data Object.” The
nEffect parameter is the same here as for other OLE drag-and-drop methods.

Drag Your Applications into the 21st Century with Drag-and-Drop

Copyright 2018, Tamar E. Granor Page 11 of 43

The nButton and nShift parameters tell you which mouse buttons and which modifier keys
were used for the drag. Both are additive, so that multiple buttons and multiple keys can be
detected. Table 3 shows the values for nButton, while Table 4 lists the values for nShift.

Table 3. The nButton parameter of OLEDragOver and OLEDragDrop tells you which buttons were used for
the drag operation. The values of the buttons in use are added together.

Value Button
1 Left button
2 Right button
4 Middle button

Table 4. The nShift parameter indicates which modifier keys were pressed. The values of the keys pressed
are added together.

Value Key
1 Shift key
2 Ctrl key
4 Alt key

The nXCoord and nYCoord parameters provide the mouse position, relative to the form, at
the time the event fired. In some cases, you may want to use them to figure out exactly
where to put the dropped item.

As the preceding discussion indicates, a lot happens during OLE drag-and-drop. Table 5
shows the events that fire in the order they occur. The same drag source is used throughout
a single operation, but events of many different drop targets may fire. In addition, the
OLEDragOver and OLEGiveFeedback events fire over and over (though possibly for many
different objects) as long as dragging continues.

Table 5. The firing order of OLE drag-and-drop methods gives you a lot of ways to control the overall
operation.

Method Parameters Object Comments
OLEDrag lDetectDrag Drag source Fires whether using

automatic or manual
dragging.

OLEStartDrag oDataObject, nEffect Drag source Allows you to prevent the
drag or determine the effect
of a drop. Allows you to
specify the data to be
dragged.

OLEDragOver oDataObject, nEffect,
nButton, nShift,
nXCoord, nYCoord,
nState

Drop target Fires repeatedly as drag
continues. Allows you to
inquire about or specify
data that would be dropped.
Allows you to specify drop
target behavior.

Drag Your Applications into the 21st Century with Drag-and-Drop

Copyright 2018, Tamar E. Granor Page 12 of 43

Method Parameters Object Comments
OLEGiveFeedback nEffect,

eMouseCursor
Drag source Fires repeatedly as drag

continues. Allows you to
change cursor image used
for drag.

OLEDragDrop oDataObject, nEffect,
nButton, nShift,
nXCoord, nYCoord

Drop target Fires when mouse button is
released. Allows you to
inquire about data and
respond.

OLESetData oDataObject,
uFormat

Drag source Allows you to change the
data for the specified
format.

OLECompleteDrag nEffect Drag source Parameter indicates what
actually happened.

At first glance, the list in the table may seem like overkill. Why do we need both
OLEDragOver and OLEGiveFeedback? Why both OLEDragDrop and OLESetData? The key is
to remember that for some OLE drag-and-drop operations, only one of the drag source and
drop targets is a VFP object, and thus only some of these events fire. For example, in the
form OLESample2.SCX in this session’s downloads, you can drag a filename into Windows
Explorer to copy a file. In that case, only the drag source events fire because VFP doesn’t
control the drop target. (Presumably, Windows Explorer has analogues of these events that
fire, but you can’t change their code.)

The Data Object

While both the drag source and the drop target have lots of PEMs for OLE drag-and-drop,
the key to the whole thing is a third object, called the data object. It’s passed as a parameter
to a number of methods of both the drag source and the drop target and it has methods of
its own that let you specify what kind of thing you’re dragging and how it should behave.

You can’t create the data object or subclass it (it’s a COM object), and you don’t have access
to it except in those methods that receive it as a parameter. But that’s sufficient to provide
tremendous control over the drag-and-drop process.

The data object contains data from the drag source in one or more formats. Table 6 lists
the available formats. As the table indicates, the format type can be numeric or character,
and you can create your own custom formats, using any numeric or character value not
already in use. Some other applications may have their own custom formats, which you can
use, if you know about them.

Table 6. The data object contains data from the drag source in one or more formats.

Constant (in FoxPro.h) Value Description
CF_TEXT 1 Text data
CF_OEMTEXT 7 Text using the OEM character set
CF_UNICODETEXT 13 Text in Unicode format
CF_FILES or CF_HDROP 15 A handle to a list of files
CF_LOCALE 16 A handle to the locale identifier for the text on the

clipboard

Drag Your Applications into the 21st Century with Drag-and-Drop

Copyright 2018, Tamar E. Granor Page 13 of 43

Constant (in FoxPro.h) Value Description
CFSTR_OLEVARIANTARRAY “OLE Variant Array” A VFP array, used for multiple data items.
CFSTR_OLEVARIANT “OLE Variant” A VFP variant, which means data in its original

format.
CFSTR_VFPSOURCEOBJECT “VFP Source Object” A reference to a VFP object
 Any other number or

string
Custom data in a format you or another application
determines.

When you start dragging, the data object is created and populated with data in one or more
formats, depending on what you’re dragging. But you can intercede and change that data or
specify there should be data in additional formats. You can also ask the data object whether
it has data in a particular format and ask it to give you the data in a particular format. The
data object has five methods, shown in Table 7. Use GetFormat and GetData to find out
what’s being dragged. Use SetFormat and SetData to specify what’s being dragged. (These
methods mean that you can make OLE drag-and-drop behave in absurd ways, by replacing
what the user thinks she’s dragging with pretty much anything you want.)

Table 7. The data object has five methods you can call to specify what kind of data it makes available and to
get your hands on the data.

Method Purpose
ClearData Remove all data and formats from the data object
GetData Get data from the data object in a specified format
GetFormat Determine whether the data object has data in a specified format
SetData Put data in a specified format into the data object
SetFormat Indicate that the data object has data in a specified format

You can call the data object’s methods from any of the drag source or drop target methods
that receive it as a parameter. For example, you can call SetData from the OLEStartDrag
method if you want to provide the same data regardless of the drop target. You can call
GetFormat and GetData from the drop target’s OLEDragOver or OLEDragDrop methods to
determine what’s available to them and to take action. You can call SetData from the drag
source’s OLESetData method to provide data at the last minute, perhaps based on
properties set in the OLEDragDrop method.

GetFormat and SetFormat each accept a single parameter, the name or number of the
desired format.

GetData has two parameters. The first is the format of the data you want. The second is an
array to hold the data coming back; it’s used only for some data formats, including format
15, where the array is filled with a list of file names. SetData also expects two parameters:
the data to store (which also can be an array) and the format.

Putting OLE Drag-and-drop together

Now that we’ve seen all the pieces, we can look at how they fit together through examples.
The form shown in Figure 3 demonstrates several features beyond dragging and dropping
text. The dropdown labelled Textbox OLEDragPicture contains the code in Listing 5 in its
Valid method. After making a choice from the dropdown, put some text in either textbox

Drag Your Applications into the 21st Century with Drag-and-Drop

Copyright 2018, Tamar E. Granor Page 14 of 43

and drag it; Figure 4 shows what a drag looks like after selecting the music icon; note that
you see both the specified drag icon and the appropriate drop icon.

Listing 5. Change OLEDragPicture to control what the user sees while dragging.

ThisForm.txtAutoDrag.OLEDragPicture = This.List[This.ListIndex, 2]
ThisForm.txtManualDrag.OLEDragPicture = This.List[This.ListIndex, 2]

Figure 4. When you change OLEDragPicture for a drag source, while dragging, you see both the specified icon
and the appropriate icon to indicate the effect of a drop.

The button with the caption “Drop here” has code in both OLEDragOver and OLEDragDrop;
when you drop text on it, the button’s caption changes. The OLEDragOver code in Listing 6
indicates that the button can accept a drop of text (the assignment to OLEDropHasData)
and that a drop should result in copying (rather than moving) the text (the assignment to
OLEDropEffects). The OLEDragDrop code in Listing 7 gets the text from the drop and
assigns it to the button’s caption. Figure 5 shows the form right after dropping text on the
button. At first glance, this may seem like a silly thing to do, but in fact, many modern
interfaces let users drag text in this way. For example, Excel’s Pivot Table Wizard involves
dragging field names to determine what data is used for pivoting.

Drag Your Applications into the 21st Century with Drag-and-Drop

Copyright 2018, Tamar E. Granor Page 15 of 43

Listing 6. This code in a button’s OLEDragOver method sets things up to allow the button to handle dropped
text.

IF oDataObject.GetFormat(1)
 This.OLEDropHasData = 1
 This.OLEDropEffects = 1
ENDIF

Listing 7. This code in a button’s OLEDragDrop method changes the button’s caption to the dropped text.

IF This.OLEDropHasData = 1
 LOCAL cTextData
 cTextData = oDataObject.GetData(1)
 IF NOT EMPTY(m.cTextData)
 This.Caption = m.cTextData
 ENDIF
ENDIF

Figure 5. The text in the manual drag textbox has just been dropped on the right-hand button, which changed
its caption to match.

It turns out using some controls as drop targets in this way causes problems. See “Form
close problems,” later in this paper for details.

Drag Your Applications into the 21st Century with Drag-and-Drop

Copyright 2018, Tamar E. Granor Page 16 of 43

The image control on the form shows how different drop targets can behave differently
with the same drag source. Dropping the image on the form changes the form’s icon, while
dropping it into the editbox adds the path to the image’s picture into the editbox. In
addition, while dragging, the image’s picture is shown. Code in five methods makes all that
work. First, the Image control’s OLEStartDrag method (shown in Listing 8. contains one
line to set OLEDragIcon.

Listing 8. The Image control’s OLEDragIcon is set to match its Picture in the control’s OLEDragIcon method.

This.OLEDragPicture = This.Picture

The two possible drop targets each have code in OLEDragOver, shown in Listing 9, to
indicate that they can accept data from a drag source that offers “VFP Source Object” type
data and has a Picture property. This code means that dragging the Image or a button or
any other control with a Picture property over the form or the edit box shows that a drop is
possible.

Listing 9. The potential drop targets for the Image have code in OLEDragOver that indicates they can accept
drops from any drag source that have “VFP Source Object” data, where that VFP source object has a Picture
property.

LOCAL oSource

IF oDataObject.GetFormat("VFP Source Object")
 oSource = oDataObject.GetData("VFP Source Object")
 IF PEMSTATUS(oSource, 'Picture', 5)
 This.OLEDropHasData = 1
 ENDIF
ENDIF

Finally, the two drop targets have code in OLEDragDrop to retrieve the Picture property
and do something with it. Because they do different things with it, the code is slightly
different for each. Listing 10 shows the form’s OLEDragDrop method, while Listing 11
shows the code from the editbox’s OLEDragDrop. Figure 6 shows the form as the image is
being dragged, while Figure 7 shows the form after dragging the image twice, dropping it
once on the form itself and once in the empty editbox. In practice, you might want to test
not just for the presence of the Picture property, but whether or not it’s empty. Similarly,
you might check the base class of the drag source or its name or anything else, because the
“VFP Source Object” data type gives you access to the whole drag source.

Listing 10. This code, in the form’s OLEDragDrop method, retrieves the Picture property from the Image (or
any other control with a Picture property) and assigns it to the form’s Icon property.

LOCAL oSource

IF oDataObject.GetFormat("VFP Source Object")
 oSource = oDataObject.GetData("VFP Source Object")
 IF PEMSTATUS(oSource, "Picture", 5)
 This.Icon = oSource.Picture
 ENDIF
ENDIF

Drag Your Applications into the 21st Century with Drag-and-Drop

Copyright 2018, Tamar E. Granor Page 17 of 43

Listing 11. The editbox’s OLEDragDrop property contains this code to add the path to the Image’s picture to
the editbox.

LOCAL oSource

IF oDataObject.GetFormat('VFP Source Object')
 oSource = oDataObject.GetData('VFP Source Object')
 IF PEMSTATUS(oSource, 'Picture', 5)
 This.Value = This.Value + ' ' + oSource.Picture
 ENDIF
ENDIF

Figure 6. When dragging the image, it uses its own picture to show what will be dropped.

Drag Your Applications into the 21st Century with Drag-and-Drop

Copyright 2018, Tamar E. Granor Page 18 of 43

Figure 7. After dragging and dropping the image onto the form and then dragging and dropping it into the
editbox, the form’s Icon has changed and the path to the image is shown in the editbox.

The final control on the first sample form, the textbox labeled “Fixed drop,” has code in its
OLESetData method (shown in Listing 12) that changes its text data to the string “Haha!”
In other words, when you drop text dragged from this control, no matter what you’ve typed
in, the string the drop target receives is “Haha!” Figure 8 shows the form as the control is
being dragged; note there’s no sign that the dropped string will be anything other than the
text from the control being dragged. Figure 9 shows the form after the drop.

Listing 12. The OLESetData method of the drag source lets you change the data it provides just before
dropping.

oDataObject.SetData("Haha!", 1)

Drag Your Applications into the 21st Century with Drag-and-Drop

Copyright 2018, Tamar E. Granor Page 19 of 43

Figure 8. Just before dropping from the Fixed drag textbox into the editbox, there’s no sign that the text will
be changed.

Drag Your Applications into the 21st Century with Drag-and-Drop

Copyright 2018, Tamar E. Granor Page 20 of 43

Figure 9. After the drop, the editbox contains “Haha!” rather than “Something”

While making a change like this may seem frivolous or even dangerous, imagine using it to
make corrections or add punctuation. You might ensure that the dragged string is
surrounded by spaces or quotation marks, for example.

One of the key features of OLE drag-and-drop is the ability to drag between applications.
The form in Figure 10 (OLESample2.SCX in the materials for this session) lets you choose a
file and then drag the filename to Windows Explorer; when you do so, the file is copied into
the current folder in Explorer. Setting this up requires code in only a single method,
OLEStartDrag for the textbox, shown in Listing 13.

Listing 13. This code, in the OLEStartDrag method of a textbox, provides file handle data that a drop target
can use to access the file.

oDataObject.SetFormat(15) && File handles
oDataObject.SetData(ThisForm.cFileName, 15)

Drag Your Applications into the 21st Century with Drag-and-Drop

Copyright 2018, Tamar E. Granor Page 21 of 43

Figure 10. When you drag the filename in the textbox into Windows Explorer, the file is copied to the current
folder.

Of course, you can have a VFP drop target for something dragged from outside. The listbox
on the same form accepts a drop of files, and puts their names in the list, putting their
shared path into the editbox on the side. Figure 11 shows the form after a drop.

The listbox’s OLEDragOver method indicates that it accepts a drop of a list of files, with the
code shown in Listing 14. OLEDragDrop, in Listing 15, contains the code that actually
grabs and processes the list of files.

Listing 14. This code in OLEDragOver indicates that the control accepts drops of a list of files, and that the
operation used for them is copy.

IF oDataObject.GetFormat(15)
 This.OLEDropHasData = 1
 This.OLEDropEffects = 1
ENDIF

Listing 15. This code, in OLEDragDrop, gets the list of dragged files and adds them to the list, putting their
path into the nearby editbox.

LOCAL aFileList[1], nFile, cFile, cPath

Drag Your Applications into the 21st Century with Drag-and-Drop

Copyright 2018, Tamar E. Granor Page 22 of 43

IF oDataObject.GetFormat(15)
 IF oDataObject.GetData(15, @aFileList)
 FOR nFile = 1 TO ALEN(aFileList)
 cFile = aFileList[m.nFile]
 cPath = JUSTPATH(m.cFile)
 This.AddItem(JUSTFNAME(m.cFile))
 ENDFOR

 ThisForm.edtFilePath.Value = m.cPath
 ENDIF
ENDIF

Figure 11. The editbox labeled Dropped files accepts a drop from Windows Explorer (or any other
application that provides a set of file handles).

Rather than just grabbing the file names, the code in DragDrop could do some kind of
processing of each file. That processing might be based on the file type; you have the whole
VFP language at your disposal.

Putting Drag-and-drop to work
With the basics covered, let’s look at some examples of drag-and-drop in use. The first
example here uses native drag-and-drop while the rest use OLE drag-and-drop.

Drag Your Applications into the 21st Century with Drag-and-Drop

Copyright 2018, Tamar E. Granor Page 23 of 43

A two-column mover

The two-column mover is a standard interface item, with two listboxes containing items for
selection and a variety of ways to move items between the two; one of those ways is by
dragging items from one list to the other. I use a mover based on a class created by Marcia
Akins and published in “1001 Things You Wanted to Know about Visual FoxPro.” In the
form shown in Figure 12 (included in the downloads for this session as moversample.scx),
the class is used to select customers.

Figure 12. The two-column mover, here used to select customers, lets you drag customers between columns.

All the drag-and-drop code is in the class cntMover, included in the materials for this
session in the class library controls.vcx. The container holds two listboxes (lstSource and
lstDestination), plus four buttons. Both lists support dragging and dropping to move items
between the two lists.

Each list has code in MouseDown, shown in Listing 16, to set up the test for a drag starting.
The lists’ MouseMove methods then delegate the actual test to the container with the code
in Listing 17.

Listing 16. Each listbox in the mover saves the mouse position at the container level to determine whether a
drag is underway.

THIS.Parent.nMouseX = nXCoord
THIS.Parent.nMouseY = nYCoord

Listing 17. This code in the listboxes’s MouseMove method lets the mover decide whether has begun.

IF nButton = 1
 This.Parent.StartDrag(This, nXCoord, nYCoord)
ENDIF

Each list’s DragOver method calls the container’s custom ChangeIcon method, as in Listing
18. That method, shown in Listing 19, checks whether the mouse is entering or leaving the
list and sets the icon accordingly.

Drag Your Applications into the 21st Century with Drag-and-Drop

Copyright 2018, Tamar E. Granor Page 24 of 43

Listing 18. The DragOver methods of the two listboxes call on the container to set the drag icon.

This.Parent.ChangeIcon(oSource, nState)

Listing 19. The custom ChangeIcon method of the container is called from the two listboxes’ DragOver
method. It changes the drag icon based on whether the mouse is entering or leaving a listbox.

LPARAMETERS toSource, tnState
IF tnState = 0
 *** allowed to drop
 toSource.DragIcon = THIS.cDropIcon
ELSE
 IF tnState = 1
 *** not allowed to drop
 toSource.DragIcon = THIS.cNoDropIcon
 ENDIF
ENDIF

Finally, the DragDrop method of the two listboxes (shown in Listing 20) calls the
container’s MoveItems method to do the work of moving items from one list to the other.
MoveItems is the same method called by the Move and Remove buttons and by the lists’
DblClick methods.

Listing 20. The DragDrop method of each listbox confirms that it’s not the drag source and then calls the
mover’s custom MoveItems method to do the actual work.

IF oSource.Name # THIS.Name
 THIS.Parent.MoveItems(oSource)
ENDIF

Moving actual objects

In an application I wrote for a client some years ago, a form (see Figure 13) shows circuit
boards (the gray boxes with hexagons at the top) in a multiplexer. The application’s specs
included the ability to drag the circuit boards from one slot to another. (Because this is
client code, I can’t include the form in the conference materials.)

Drag Your Applications into the 21st Century with Drag-and-Drop

Copyright 2018, Tamar E. Granor Page 25 of 43

Figure 13. The gray vertical objects represent circuit boards in a multiplexer. The application specs called for
the ability to drag them from one slot to another.

It takes very little code to make it work. The circuit board is represented by a class called
cntCard. The MouseDown method of cntCard calls a custom method named StartCardDrag.
StartCardDrag, in turn, calls OLEDrag(.T.) to start dragging.

The container for the cards is a class named cntSlots. Among the things it contains is a
shape named shpSlotSpace. That shape’s OLEDropMode is set to 2-Pass to container, so
that cntSlots can handle drops. Note that OLEDropMode is to 0-Disabled for cntCard; that
prevents dropping one circuit board on another.

The OLEDragOver method of cntSlots, shown in Error! Not a valid bookmark self-
reference., makes the drop possible by setting the OLEDropHasData property.

Listing 21. The OLEDragOver property of the cntSlots object (the one that contains all the circuit boards)
indicates that a drop can be accepted.

IF oDataObject.GetFormat("VFP Source Object")
 This.OLEDropHasData = 1
ENDIF

Drag Your Applications into the 21st Century with Drag-and-Drop

Copyright 2018, Tamar E. Granor Page 26 of 43

Finally, the OLEDragDrop method of cntSlots calls a custom form method, MoveCard,
passing the drag source, the container for cntSlots (an object of a class called cntShelf) and
the position of the drop; the code is shown in Listing 22. The form’s MoveCard method is
complex, because it not only moves the physical object (cntCard), but figures out what the
underlying business objects are and calls on them to make the necessary changes to the
object hierarchy.

Listing 22. This code, in cntSlots’ OLEDragDrop method, asks the form to do the actual work of moving the
circuit board from one slot to another.

IF oDataObject.GetFormat("VFP Source Object")
 ThisForm.MoveCard(oDataObject.GetData("VFP Source Object"), ;
 This.Parent, nYCoord, nXCoord)
ENDIF

Dragging from Outlook

It’s easy to imagine an application where users want to drag items from Outlook and have
them processed in some way. For example, you might want users to drag a contact from
Outlook and have the application add that contact to a table, send an email to that contact,
or perhaps make that contact the designated contact for a particular project. You might
want to drag an appointment from Outlook to set the date for some application item.

Unfortunately, by default, dropping an Outlook item onto a drop target (that accepts text)
simply copies a few fields and their column headers from the item. While other Office
applications receive Outlook items in something resembling their native format, VFP can’t
access that format, even if you set it up as a custom format.

Instead, in order to actually access the Outlook data, you need to combine OLE drag-and-
drop with Automation. (My thanks to Ben Creighton and Derek Jackson, who provided a
roadmap to this approach in their contributions to the topic “Outlook Drag Drop” in the
Visual FoxPro Wiki: http://fox.wikis.com/wc.dll?Wiki~OutlookDragDrop~WIN_COM_API.)
This solution isn’t perfect (in particular, you can’t distinguish between dragging an email
item and dragging an attachment to that item), but for most purposes, it’s good enough.

The key is that to drag from Outlook, it must be running, and thus you can not only connect
via Automation, but in a drag-and-drop situation, you can pay attention to what’s currently
selected, which must be what was dragged. To do so, you use Outlook’s ActiveExplorer
property, which provides a reference to the Outlook interface.

You need a way to hold onto various references to Outlook. I chose to create a custom class
with a reference to Outlook itself and to several of its key objects. The class is included in
the materials for this session as OutlookApp.PRG; the key code is in the Init method, shown
in Listing 23.

Listing 23. This code in the Init method of the custom OutlookApp class, grabs references to several key
Outlook objects.

PROCEDURE Init

http://fox.wikis.com/wc.dll?Wiki~OutlookDragDrop~WIN_COM_API

Drag Your Applications into the 21st Century with Drag-and-Drop

Copyright 2018, Tamar E. Granor Page 27 of 43

LOCAL lSuccess

TRY
 This.oOutlook = CREATEOBJECT('Outlook.Application')
 This.oNameSpace = This.oOutlook.GetNameSpace('MAPI')
 This.oFolders = This.oNameSpace.Folders
 This.oExplorer = This.oOutlook.ActiveExplorer
 lSuccess = .T.
CATCH
 MESSAGEBOX("Unable to connect to Outlook. Cannot drag into this form from
Outlook")
 lSuccess = .F.
ENDTRY

RETURN m.lSuccess

Any form that accepts drops from Outlook needs a reference to this object. The form shown
in Figure 14 has a custom oOutlook property. (It’s included in the downloads for this
session as OLESampleOutlook.SCX.) Code in the form’s Init method instantiates the
OutlookApp class and stores a reference in the oOutlook property. (This means that
ThisForm.oOutlook.oOutlook is the form’s reference to Outlook itself.)

Drag Your Applications into the 21st Century with Drag-and-Drop

Copyright 2018, Tamar E. Granor Page 28 of 43

Figure 14. This form combines Automation with OLE drag-and-drop to capture dropped Outlook data. Here,
the multi-day all-day event for Southwest Fox has been dropped into the editbox.

As always, to do anything more than dropping text, it takes code in both OLEDragOver and
OLEDragDrop. The editbox’s OLEDragOver method, shown in Listing 24, checks for data in
a useful format, including the format Outlook uses, FileGroupDescriptor.

Listing 24. This code, in OLEDragOver, checks for data in a format of interest, including Outlook’s
FileGroupDescriptor format.

IF oDataObject.GetFormat("FileGroupDescriptor")
 This.OLEDropHasData = 1
 This.OLEDropEffects = 1 && copy
ENDIF

If the OLEDragDrop method finds FileGroupDescriptor data, it asks Outlook about the
currently selected item and processes it, as in Listing 25. The checkbox on the form turns
off this behavior and allows the default behavior for a drop from Outlook.

First, we confirm we have FileGroupDesciptor data. If we do and we have a reference to
Outlook, we get a reference to the currently selected item or items
(ThisForm.oOutlook.oExplorer.Selection). Outlook hands back a collection of selected
items, so we loop through the collection. The MessageClass property of an item indicates

Drag Your Applications into the 21st Century with Drag-and-Drop

Copyright 2018, Tamar E. Granor Page 29 of 43

what type of item it is, as the CASE statement shows. The code here simply displays some
information about the item in the editbox; in an application, you’d likely do more with that
data.

Listing 25. The editbox’s OLEDragDrop method asks Outlook for its current item and processes that in
response to the drop.

LOCAL oObjColl, oObj, cInfo, nAttachment, cCentury

IF NOT Thisform.chkRawData.Value
 IF oDataObject.GetFormat("FileGroupDescriptor")
 IF NOT ISNULL(ThisForm.oOutlook)
 oObjColl = ThisForm.oOutlook.oExplorer.Selection
 FOR EACH oObj IN oObjColl
 ThisForm.Addmessage("Found item of type " + oObj.MessageClass)
 DO CASE
 CASE oObj.MessageClass = "IPM.Note"
 * Email or attachment
 * Can't tell one from the other
 cInfo = oObj.Subject + CHR(13) + CHR(10)
 cInfo = m.cInfo + " From: " + oObj.Sender.Name + CHR(13) + CHR(10)
 cInfo = m.cInfo + " To: " + oObj.To + CHR(13) + CHR(10)
 cInfo = m.cInfo + " Received: " + TRANSFORM(oObj.ReceivedTime) + ;
 CHR(13) + CHR(10)

 IF oObj.Attachments.Count > 0
 cInfo = cInfo + " Atttachments: " + ;
 TRANSFORM(oObj.Attachments.Count) + CHR(13) + CHR(10)
 nAttachment = 0
 FOR EACH oAtt IN oObj.Attachments
 nAttachment = m.nAttachment + 1
 cInfo = m.cInfo + " " + TRANSFORM(m.nAttachment) + ": " + ;
 oAtt.FileName + CHR(13) + CHR(10)
 ENDFOR
 ENDIF

 CASE oObj.MessageClass = "IPM.Appointment"
 * Calendar item
 cInfo = oObj.Subject
 nLength = oObj.End - oObj.Start
 cCentury = SET("Century")
 SET CENTURY ON
 IF oObj.AllDayEvent
 cInfo = m.cInfo + " all day "
 IF m.nLength = 24 * 60 * 60
 cInfo = m.cInfo + "on " + MDY(TTOD(oObj.Start))
 ELSE
 cInfo = m.cInfo + "from " + MDY(TTOD(oObj.Start)) + " to " + ;
 MDY(TTOD(oObj.End-1))
 ENDIF
 ELSE
 cInfo = m.cInfo + " from " + TTOC(oObj.Start) + " to " + ;
 TTOC(oObj.End)
 ENDIF

Drag Your Applications into the 21st Century with Drag-and-Drop

Copyright 2018, Tamar E. Granor Page 30 of 43

 SET CENTURY &cCentury

 CASE oObj.MessageClass = "IPM.Contact"
 * Contact item
 cInfo = oObj.FullName + CHR(13) + CHR(10)
 IF NOT EMPTY(oObj.HomeAddress)
 cInfo = m.cInfo + " Home: " + oObj.HomeAddress + CHR(13) + CHR(10)
 ENDIF
 IF NOT EMPTY(oObj.BusinessAddress)
 cInfo = m.cInfo + " Work: " + oObj.BusinessAddress + ;
 CHR(13) + CHR(10)
 ENDIF
 IF NOT EMPTY(oObj.HomeTelephoneNumber)
 cInfo = m.cInfo + " Home: " + oObj.HomeTelephoneNumber + ;
 CHR(13) + CHR(10)
 ENDIF
 IF NOT EMPTY(oObj.BusinessTelephoneNumber)
 cInfo = m.cInfo + " Work: " + oObj.BusinessTelephoneNumber + ;
 CHR(13) + CHR(10)
 ENDIF
 IF NOT EMPTY(oObj.CarTelephoneNumber)
 cInfo = m.cInfo + " Mobile: " + oObj.CarTelephoneNumber + ;
 CHR(13) + CHR(10)
 ENDIF
 IF NOT EMPTY(oObj.Email1Address)
 cInfo = m.cInfo + " Email: " + oObj.Email1Address + ;
 CHR(13) + CHR(10)
 ENDIF

 CASE oObj.MessageClass = "IPM.Task"
 * Task item
 cInfo = oObj.Subject + CHR(13) + CHR(10)
 IF NOT EMPTY(oObj.DueDate)
 cInfo = cInfo + " Due: " + TTOC(oObj.DueDate) + CHR(13) + CHR(10)
 ENDIF
 cInfo = m.cInfo + IIF(oObj.Complete, ' ', ' NOT ') + "complete"

 OTHERWISE
 * Unknown
 cInfo = "Sorry. I couldn't understand what you dropped."

 ENDCASE

 This.Value = This.Value + m.cInfo + CHR(13) + CHR(10)

 ENDFOR
 ENDIF
 ENDIF
ENDIF

There are a few weaknesses here. First, as noted, you can’t distinguish an email item from
an attachment to that item. (The code here reports on both.) In addition, there’s no
guarantee that Outlook is the only application providing data in the FileGroupDescriptor
format. I haven’t found any other, but that doesn’t mean they don’t exist.

Drag Your Applications into the 21st Century with Drag-and-Drop

Copyright 2018, Tamar E. Granor Page 31 of 43

Dragging between grids and Office

While dragging from Outlook into VFP is tricky, dragging between Excel or Word and VFP is
simple. It takes only a little code to drag an Excel selection or the contents of a Word table
into a VFP grid, or to put VFP grid contents into Excel or Word.

Dragging from Excel or Word into a grid

Excel and Word make their contents available in a number of formats, but the easiest to
work with is format 1-text. (For this example, we’re considering a selected table in Word. In
general, you can drag and drop text from Word directly into VFP’s text controls without any
code.)

In both cases, the tabular contents are packaged with tabs between columns and returns
between lines. For example, Figure 15 shows part of a pivot table of Northwind sales by
employee by month. Figure 16 shows what you get when you drag the highlighted portion
into a text file. (Note that dragging highlighted data out of Excel is a little tricky. You have to
move the mouse over the edge of the selected area until you see the resize icon and then
click and drag.)

Figure 15. This spreadsheet holds a pivot table of Northwind sales by employee by month. The names and
the 1996 data are selected.

Figure 16. Data dragged out of Excel is tab-separated with returns at the end of each line.

Parsing data in that format isn’t hard. The most challenging part is figuring out how many
columns there are and how wide each needs to be. Figure 17 shows a form
(OLESampleGrid2.SCX in the session materials) with a grid that does the necessary parsing.
The grid’s OLEDragOver method, shown in Listing 26, is similar to previous examples. It
checks for text data and, if it finds it, indicates the grid can accept the drop as a copy.

Drag Your Applications into the 21st Century with Drag-and-Drop

Copyright 2018, Tamar E. Granor Page 32 of 43

Listing 26. The grid’s OLEDragOver method checks for text data.

IF oDataObject.GetFormat(1)
 This.OLEDropHasData = 1
 This.OLEDropEffects = 1
ENDIF

Figure 17. The grid in this form parses text data and builds a cursor from it, then displays that cursor.

The real work happens in the grid’s OLEDragDrop method, shown in Listing 27. If there is
text data available, GetData is called to get it. Then, the data is put into an array with one
row for each row from the original. Each row is parsed to determine how many columns
there are. Since different rows in the dragged data may have data in different numbers of
columns, each row has to be checked. At the same time, the actual data is checked to
determine the longest value in each column.

Once we have all that information, we can create a cursor with the right number of columns
and with each column wide enough to hold the largest value. (In this example, I’m creating
them all as character. You could write additional code to determine whether all data in any
column is of some other type and then use that data type for the column.) Finally, we copy
the data from the array to the cursor and set the cursor as the grid’s RecordSource. (Note

Drag Your Applications into the 21st Century with Drag-and-Drop

Copyright 2018, Tamar E. Granor Page 33 of 43

that the code will fail if any data item includes all three of VFP string delimiters: single
quotes, double quotes and square brackets.)

Listing 27. The grid’s OLEDragDrop method parses the dropped data to find out how many rows and
columns there are, and how wide each column needs to be. Then it creates a cursor containing the data.

LOCAL aRowData[1], aOneRow[1], aColSize[1], aDraggedData[1]
LOCAL nRows, nCols, nColCount
LOCAL nColWidth
LOCAL nRow, nCol
LOCAL cData, cEndDelimiter, cItem, cStartDelimiter, uData

IF oDataObject.GetFormat(1)
 uData = oDataObject.GetData(1)
 * Parse result into rows and cols and put into a cursor
 nRows = ALINES(aRowData, m.uData)

 * First pass is to determine number of cols
 nColCount = 0
 FOR nRow = 1 TO m.nRows
 nCols = ALINES(aOneRow, aRowData[m.nRow], CHR(9))
 nColCount = MAX(m.nColCount, m.nCols)
 DIMENSION aColSize[m.nColCount]
 FOR nCol = 1 TO m.nCols
 IF VARTYPE(aColSize[m.nCol]) <> 'N'
 aColSize[m.nCol] = 1
 ENDIF
 aColSize[m.nCol] = MAX(aColSize[m.nCol], LEN(aOneRow[m.nCol]))
 ENDFOR
 ENDFOR

 * Now create a cursor
 LOCAL cCursorDef, cFld

 cCursorDef = "CREATE CURSOR csrGridSrc ("
 FOR nCol = 1 TO m.nColCount
 IF aColSize[m.nCol] > 254
 cFld = "mFld" + TRANSFORM(m.nCol) + " M "
 ELSE
 cFld = "cFld" + TRANSFORM(m.nCol) + ;
 " C(" + TRANSFORM(aColSize[m.nCol]) + ")"
 ENDIF

 cCursorDef = m.cCursorDef + m.cFld
 IF m.nCol < m.nColCount
 cCursorDef = m.cCursorDef + ", "
 ELSE
 cCursorDef = m.cCursorDef + ")"
 ENDIF
 ENDFOR

 &cCursorDef

 * Now populate

Drag Your Applications into the 21st Century with Drag-and-Drop

Copyright 2018, Tamar E. Granor Page 34 of 43

 FOR nRow = 1 TO m.nRows
 nCols = ALINES(aOneRow, aRowData[m.nRow], CHR(9))
 cData = ''
 FOR nCol = 1 TO m.nCols
 cItem = aOneRow[m.nCol]
 IF '[' $ m.cItem OR ']' $ m.cItem
 IF ['] $ m.cItem
 cStartDelimiter = ["]
 ELSE
 cStartDelimiter = [']
 ENDIF
 ELSE
 cStartDelimiter = '['
 ENDIF

 IF m.cStartDelimiter = '['
 cEndDelimiter = ']'
 ELSE
 cEndDelimiter = m.cStartDelimiter
 ENDIF

 cData = m.cData + m.cStartDelimiter + aOneRow[m.nCol] +
 m.cEndDelimiter + ","
 ENDFOR

 * Add any missing columns at the end
 FOR nCol = m.nCol TO m.nColCount
 cData = cData + "[],"
 ENDFOR

 cData = LEFT(m.cData, LEN(m.cData) - 1)

 INSERT INTO csrGridSrc VALUES (&cData)
 ENDFOR

 GO TOP IN csrGridSrc
 This.RecordSource = "csrGridSrc"
ENDIF

The same code works for data dragged from a Word table.

Dragging from a grid to Excel or Word

Knowing what format Excel expects makes the reverse problem, dragging from a grid into
Excel, easier (with one complication, described a little later). We just have to provide data
in the desired format and Excel will do the rest.

The session materials contain OLESampleGridDrag, which displays a grid that you can drag
to Excel or Word to copy the data. The grid’s OLEStartDrag method, shown in Listing 28,
packages up the data from the grid’s RecordSource into a format that both Excel and Word
can handle. The routine loops through the RecordSource and creates a string with columns
separated by tabs, and rows separated by CRLF. (Although Excel provides data with CR
only, it works fine with CRLF, and Word works better when both are provided.) Although

Drag Your Applications into the 21st Century with Drag-and-Drop

Copyright 2018, Tamar E. Granor Page 35 of 43

the code here is specific to the data used in the example form, it wouldn’t be much harder
to write generic code, using the FIELD() function.

Listing 28. This code, in a grid’s OLEStartDrag method, packages the grid data so it can be dropped.

* Set up data
LOCAL cGridData, nRecNo

cGridData = ''
SELECT (This.RecordSource)
nRecNo = RECNO(This.RecordSource)

SCAN
 cGridData = m.cGridData + ALLTRIM(FirstName) + CHR(9) + ;
 ALLTRIM(LastName) + CHR(9) + ;
 ALLTRIM(Title) + CHR(9) + ;
 TRANSFORM(BirthDate) + CHR(13) + CHR(10)
ENDSCAN

GO (m.nRecNo) IN (this.RecordSource)

oDataObject.SetData(m.cGridData, 1)

RETURN

When you drag this data into Word, you don’t get a table, but you get a block of text that
can be converted to a table using Insert | Table | Convert Text to Table from the Word
menu.

The one complication is configuring the grid so you can actually drag it. When you click into
a grid, the control onto which you clicked receives the MouseDown event, not the grid
itself. In order to have the grid process MouseDown and start the drag, the Init method of
the grid class (grdDragDrop in DragDropBase in the session materials) contains the code in
Listing 29. lDragGrid is a custom property that must be set to .T. to enable dragging of the
grid as a whole. The BindMouseDown method, shown in Listing 30, drills down through
the grid to bind the MouseDown method of every component to the grid itself.

Listing 29. This code in the grid’s Init ensures that MouseDown is processed by the grid, not its contained
controls

IF This.lDragGrid
 This.BindMouseDown(This)
ENDIF

Listing 30. The grid’s custom BindMouseDown method uses BindEvent to ensure that clicking the mouse
anywhere in the grid fires the grid’s MouseDown method.

LPARAMETERS oContainer

LOCAL oObject

FOR EACH oObject IN oContainer.Objects FOXOBJECT

Drag Your Applications into the 21st Century with Drag-and-Drop

Copyright 2018, Tamar E. Granor Page 36 of 43

 IF PEMSTATUS(m.oObject, "MouseDown", 5)
 BINDEVENT(m.oObject, "MouseDown", This, "MouseDown")
 ENDIF

 IF PEMSTATUS(oObject, "Objects", 5)
 This.BindMouseDown(m.oObject)
 ENDIF
ENDFOR

Drag-and-drop in a Treeview

Soon after this session was conceived, Doug Hennig asked whether I was planning to talk
about dragging and dropping with TreeView controls. He noted that it’s common to want to
drag a child node from its parent to another or to drag a file from Explorer to add it.

I’d never tried drag-and-drop with TreeView, but it turned out that not only had Doug done
so, but he had worked out the kinks and created a treeview class that makes it all easy.
Rather than recreating the wheel, I got his permission to use his class. (Not surprisingly,
Doug has written about all this, too. You’ll find Doug’s papers about treeviews at
http://doughennig.com/papers/Pub/200407dhen.pdf,
http://doughennig.com/papers/Pub/200408dhen.pdf, and
http://doughennig.com/papers/Pub/ExplorerInterfaces.pdf. The classes used for this
example come from the third paper; those classes are also included in the downloads for
this session.)

The example here uses the sftreeviewcursor class found in sftreeview.vcx. That class is a
subclass of sftreeviewcontainer, which contains the basic drag-and-drop code described
here.

Figure 18 shows the classes and students in a school organized in a treeview; the form is
included in the downloads for this session as TreeviewDragDrop.SCX. The top-level nodes
are the grades, the next level contains classrooms (showing the room number and the
teacher’s name), and the bottom level shows students. The tables that provide the data are
included in the materials for this session. (Note that the Students and Teachers table are
drawn from sample data originally created for another session, so they contain a lot more
data than needed for the example and follow a different set of naming conventions.)

http://doughennig.com/papers/Pub/200407dhen.pdf
http://doughennig.com/papers/Pub/200408dhen.pdf
http://doughennig.com/papers/Pub/ExplorerInterfaces.pdf

Drag Your Applications into the 21st Century with Drag-and-Drop

Copyright 2018, Tamar E. Granor Page 37 of 43

Figure 18. This form lets you move a student from one class to another using OLE Drag-and-drop.

Doug’s treeview class is actually a container that holds a TreeView, an ImageList, and a
couple of other controls. The TreeView, of course, is contained in a OLEControl, and the
OLEControl has the usual drag-and-drop methods. Doug’s class delegates from those
methods to methods of the treeview container. For example, the OLEControl’s
OLEStartDrag method contains the code in Listing 31. MouseDown, OLECompleteDrag,
OLEDragDrop and OLEDragOver contain analogous code. All the interesting code is in the
container’s TreeOLEXXX methods.

Listing 31. The methods of the OLEControl for the treeview, such as OLEStartDrag, delegate to the container
that holds it.

* Pass OLEStartDrag events to the parent.

lparameters toData, ;
 tnAllowedEffects
This.Parent.TreeOLEStartDrag(@toData, @tnAllowedEffects)

Drag Your Applications into the 21st Century with Drag-and-Drop

Copyright 2018, Tamar E. Granor Page 38 of 43

Doug’s code addresses a variety of issues with treeviews. For example, TreeMouseDown
makes sure that the node under the mouse is the one selected before deciding whether to
start dragging. In addition, code in TreeDragOver ensures that if you drag near the top or
bottom of the tree, it scrolls so you can see items that aren’t currently visible.

Three custom methods let you decide whether to allow dragging (CanStartDrag), whether
to allow a drop (CanDrop), and what to do with a drop (HandleDragDrop). They’re called at
the appropriate times and mean that you can, for the most part, just use Doug’s code as is.
Be aware that CanDrop is called from both TreeOLEDragOver and TreeOLEDragDrop
(which are called from the treeview’s OLEDragOver and OLEDragDrop methods,
respectively).

In the example, there’s code in those three methods, as well as the container’s
FillTreeViewCursor and LoadImages methods. The code in LoadImages, as the name
suggests, provides the images used in the treeview; it’s shown in Listing 32. (The images
are included in the downloads for this session; they were all created by Freepik and
downloaded from www.flaticon.com.)

Listing 32. This code in the treeview container’s LoadImages method sets up the images used for the three
levels in the treeview.

WITH This.oIMAGELIST
 * Icons made by Freepik from www.flaticon.com
 .ListImages.Add(1, "Grade", LOADPICTURE("School.bmp"))
 .ListImages.Add(2, "Class", LOADPICTURE("Blackboard.bmp"))
 .ListImages.Add(3, "Student", LOADPICTURE("Backpack.bmp"))
ENDWITH

Not surprisingly, the code in FillTreeViewCursor gathers the data to display and puts it into
a cursor in the format Doug’s sftreeviewcursor class expects; it’s shown in Listing 33. (See
Doug’s paper for an explanation of the expected format.) The three GetXXX methods called
here each run a single query to collect data for that level of the tree.

Listing 33. The custom FillTreeViewCursor method lets you fill a cursor with data the class uses to populate
and manage the treeview.

* Populate with grades, classes and students
ThisForm.GetGrades()
SCAN
 INSERT INTO (This.cCursorAlias) ;
 (ID, ;
 Type, ;
 Text, ;
 Image, ;
 Sorted) ;
 VALUES ;
 (TRANSFORM(csrGradeList.iGradeID), ;
 'Grade', ;
 csrGradeList.mDesc, ;
 "Grade", ;
 .T.)

Drag Your Applications into the 21st Century with Drag-and-Drop

Copyright 2018, Tamar E. Granor Page 39 of 43

ENDSCAN

ThisForm.GetClasses()
SCAN
 INSERT INTO (This.cCursorAlias) ;
 (ID, ;
 Type, ;
 ParentID, ;
 ParentType, ;
 Text, ;
 Image, ;
 Sorted) ;
 VALUES ;
 (TRANSFORM(csrClasses.iClassID), ;
 'Class', ;
 TRANSFORM(csrClasses.iGradeID), ;
 'Grade', ;
 csrClasses.cRoom + ": " + csrClasses.cName, ;
 'Class', ;
 .f.)
ENDSCAN

ThisForm.GetStudents()
SCAN
 INSERT INTO (This.cCursorAlias) ;
 (ID, ;
 Type, ;
 ParentID, ;
 ParentType, ;
 Text, ;
 Image) ;
 VALUES ;
 (TRANSFORM(csrStudents.StudentID), ;
 'Student', ;
 TRANSFORM(csrStudents.iClassID), ;
 'Class', ;
 csrStudents.cName, ;
 'Student')
ENDSCAN

In the example, we want to allow only students to be dragged. So the CanStartDrag method
(shown in Listing 34) makes sure the node being dragged is a student node. Because
sftreeviewcursor maintains the cCurrentNodeType property, it takes only one line of code
to figure that out.

Listing 34. The CanStartDrag method is used to determine whether a particular node can be dragged. Here, it
limits dragging to Student nodes.

* Only students can be dragged
RETURN This.cCurrentNodeType = 'Student'

If we’re dragging only students, then the only place we can drop is classes; it wouldn’t make
sense to drop a student onto a grade level. In addition, there’s no reason to drop a student

Drag Your Applications into the 21st Century with Drag-and-Drop

Copyright 2018, Tamar E. Granor Page 40 of 43

onto the class they’re currently in. So the code in CanDrop checks those conditions. If
they’re met, it sets the drop effect to copy + move. In testing, I found that setting it to move
only worked badly in cases where drops are allowed by the CanDrop code, but are
prevented by additional code in HandleDragDrop.

In addition to the usual OLEDragOver parameters, CanDrop receives an object reference to
the selected node (toNode) and to a specially constructed object (toObject) that contains
information about the drag source and the drop target. The code in CanDrop is shown in
Listing 35. The format CF_MAX (17) is one of the Windows’ clipboard formats; the
TreeOLEStartDrag method in sftreeviewcontainer puts information about the drag source
into the data object in that format, as well as text format.

Listing 35. The custom CanDrop method is called by both TreeOLEDragOver and TreeOLEDragDrop to
determine whether to allow the drop.

lparameters toData, toNode, toObject, tnEffect, tnButton, tnShift

* Allow drops only onto classes

LOCAL cDragKey, lResult
LOCAL nRecNo

lResult = .F.

DO CASE
CASE toData.GetFormat(CF_MAX) AND toObject.DragType = 'Student' AND ;
 toObject.DropType = 'Class'
 * Make sure it's a different class than the student
 * is now in
 cDragKey = toObject.DragKey
 nRecNo = RECNO("ClassLists")
 IF SEEK(ALLTRIM(m.cDragKey), "ClassLists", "iStudentID")
 IF VAL(toObject.DropKey) <> ClassLists.iClassID
 lResult = .T.
 ENDIF
 ENDIF
 GO (m.nRecNo) IN ClassLists

OTHERWISE
 lResult = .F.
ENDCASE

IF m.lResult
 tnEffect = DROPEFFECT_MOVE + DROPEFFECT_COPY
ELSE
 tnEffect = DROPEFFECT_NONE
ENDIF

RETURN m.lResult

Drag Your Applications into the 21st Century with Drag-and-Drop

Copyright 2018, Tamar E. Granor Page 41 of 43

The HandleDragDrop method (shown in Listing 36) makes one additional check, whether
you’re moving the child to a different grade. If so, it prompts to confirm you want to do that.
If it’s appropriate, it changes the child’s classroom assignment and refreshes the tree.

Listing 36. The custom HandleDragDrop method gets the code to actually respond to the drop.

lparameters toData, toNode, toObject

* If dropped student on a different class, move it.
* Do so by changing the underlying data and then
* reloading
LOCAL lProceed

DO CASE
CASE toData.GetFormat(CF_MAX) AND toObject.DragType = 'Student' AND ;
 toObject.DropType = 'Class'

 lProceed = .T.

 cDragKey = toObject.DragKey
 cDropKey = toObject.DropKey

 * Check student's current grade and the grade of
 * the proposed new class.
 SELECT Grades.iGradeID, mDesc ;
 FROM Grades ;
 JOIN ClassRooms ;
 ON Grades.iGradeID = ClassRooms.iGradeID ;
 JOIN ClassLists ;
 ON Classrooms.iClassID = ClassLists.iClassID ;
 WHERE ClassLists.iStudentID = VAL(m.cDragKey) ;
 INTO CURSOR csrCurGrade

 SELECT Grades.iGradeID, mDesc ;
 FROM Grades ;
 JOIN ClassRooms ;
 ON Grades.iGradeID = ClassRooms.iGradeID ;
 WHERE ClassRooms.iClassID = VAL(m.cDropKey) ;
 INTO CURSOR csrNewGrade

 IF csrCurGrade.iGradeID <> csrNewGrade.iGradeID
 cMessage = "Student is currently in " + ALLTRIM(csrCurGrade.mDesc) + ". " + ;
 "Do you really want to move the student to " + ;
 ALLTRIM(csrNewGrade.mDesc) + "?"
 IF MESSAGEBOX(m.cMessage, 4+32, "Move student to new grade") = 6
 lProceed = .T.
 ELSE
 lProceed = .F.
 ENDIF
 ENDIF

 IF m.lProceed
 nRecNo = RECNO("ClassLists")
 IF SEEK(ALLTRIM(m.cDragKey), "ClassLists", "iStudentID")

Drag Your Applications into the 21st Century with Drag-and-Drop

Copyright 2018, Tamar E. Granor Page 42 of 43

 REPLACE iClassID WITH VAL(toObject.DropKey) IN ClassLists
 ENDIF
 GO (m.nRecNo) IN ClassLists
 ENDIF

 This.LoadTree()

OTHERWISE
 * Nothing to do
ENDCASE

RETURN

Make sure to SET EXACT ON in the form. Some of the sftreeviewcontainer code expects that
setting.

Drag-and-drop issues
While both forms of drag-and-drop are powerful and offer a lot, there are also some issues
in working with them.

Drag from text controls

The first issue is the interaction between entering data and starting a drag in text controls.
(Text controls here means any control that lets you type text in, specifically textboxes,
editboxes, spinners and comboboxes.) There are several variations of this problem,
depending on which type of drag-and-drop you’re using and how you’ve configured it.

With native drag-and-drop, when a text control is set for automatic dragging (DragMode =
1), you can’t click into the control to type. To enter data, you have to tab into it. The best
solution to this problem is stay away from automatic dragging; with manual dragging
started based on MouseDown, there’s no problem clicking into a text control.

For OLE drag-and-drop, the problem is a little more subtle. There, you’re not dragging the
whole control, but the highlighted text from the control. That means there are two discrete
steps to starting a drag: highlighting some text and dragging it. To do that with the mouse,
you have to first highlight and release the mouse button, and then push the button again to
start the drag. This one is a training issue, since there’s no obvious work-around.

Form close problems

An example in “Putting OLE Drag-and-drop together,” earlier in this paper, demonstrates
changing the caption of a button by dragging text onto it. The first version of that example
used a checkbox rather than a button as the drop target; while the code worked, after the
drop, the form wouldn’t close.

The failure was silent; clicking the Close button (which issues ThisForm.Release) or the
form’s built-in close button, or choosing Close from the window’s menu all did nothing. The
only clue to what was going on came from clicking the Modify Form button in the Standard

Drag Your Applications into the 21st Century with Drag-and-Drop

Copyright 2018, Tamar E. Granor Page 43 of 43

toolbar. When I did that, the message in Figure 19 appeared. The same problem occurred if
the drop target was an option button. To close the form, I needed to issue CLEAR ALL.

Figure 19. After dropping text on checkboxes or option buttons, this error prevents closing the form.

The materials for this session contain an example form (OLESampleNoClose.SCX) that
demonstrates the problem. The only work-around I’ve found is to not drop text onto those
controls with OLE drag-and-drop.

Debugging

Debugging drag-and-drop code is tricky. You can’t suspend during a drag-and-drop
operation. With native drag-and-drop, if an error occurs before the DragDrop method, the
drag is cancelled. With OLE drag-and-drop, you can’t use the mouse to navigate in the error
dialog.

The inability to suspend, of course, means that you can’t step through drag-and-drop code.
That means you have to use techniques such as logging. This is actually one of the reasons I
created the example classes included in this session’s materials. While working on this
session, I frequently found myself adding information to the classes, as well as using the
form’s messaging mechanism to help debug specific issues. As the classes show,
DEBUGOUT works during drag-and-drop; so does the Event Tracker. Use those two
techniques to understand what’s going on in a particular drag-and-drop sequence.

Final thoughts
While a conventional data entry application may have no need for drag-and-drop, there are
plenty of applications that can benefit from it, and users expect to be able to do certain
tasks, like moving files around, by dragging and dropping.

Fortunately, VFP is up to the task. While drag-and-drop has a lot of moving parts, the power
it offers makes it worth learning how it all works. To simplify the learning task, I
recommend ignoring native drag-and-drop and putting your efforts into OLE drag-and-
drop, which can do everything the native version can and more.

	Introduction
	Why are there two?
	Basics
	Native Drag-and-drop
	OLE drag-and-drop
	OLE drag-and-drop parameters
	Drag source PEMs
	Drop target PEMS
	The Data Object
	Putting OLE Drag-and-drop together

	Putting Drag-and-drop to work
	A two-column mover
	Moving actual objects
	Dragging from Outlook
	Dragging between grids and Office
	Dragging from Excel or Word into a grid
	Dragging from a grid to Excel or Word

	Drag-and-drop in a Treeview

	Drag-and-drop issues
	Drag from text controls
	Form close problems
	Debugging

	Final thoughts

